

多功能数据采集器 UC50x 系列

安全须知

- ◆ 为保护产品并确保安全操作,请遵守本使用手册。如果产品使用不当或者不按手册要求使用,本公司 概不负责。
- 严禁改装本产品。
- ◆ 旋下接口防护帽时请勿用力将接口一起旋动。
- ◆ 请勿将产品安装在不符合工作温度、湿度等条件的环境中使用,远离冷源、热源和明火。
- ◆ 请勿将产品安装在强振动、强磁场环境下。
- ◆ 使用拨码开关时注意断电或将电池接线拆下,保证主板不带电。
- ◆ 请在产品关机情况下完成与其它终端设备的接线,户外使用请做好防水处理。
- ◆ 为了您的设备安全,请及时修改设备默认密码(123456)。

产品符合性声明

UC50x 系列符合 CE, FCC 和 RoHS 的基本要求和其他相关规定。

版权所有© 2011-2023 星纵物联 保留所有权利。

如需帮助,请联系

星纵物联技术支持: 邮箱: contact@milesight.com 电话: 0592-5023060 传真: 0592-5023065 地址: 厦门市集美区软件园三期 C09 栋

文档修订记录

日期	版本	描述
2021.2.7	V1.0	第一版
2021.12.30	V1.1	更新品牌 Logo
2022.1.17	V2.0	发布 2.0 硬件版本
2022.12.19	V2.1	1. 支持修改脉冲计数当前值

		2. Modbus 通道支持配置字节序	
		3. 更新包装清单	
		4. 更新通信协议	
2023.6.28	V3.0	1. 新增 SDI-12 接口	
		2. 新增存储/重传/回传功能	
		3. 新增组播功能	
		4. 新增 AI/RS485 告警规则	
		5. AI 接口支持设置 Osh 和 Osl	
		6. 更新通信协议	

目录

—	产品简介	6
	1.1 产品介绍	6
	1.2 产品亮点	6
Ξ、	产品结构	7
	2.1 包装清单	7
	2.2 外部结构和接口说明	7
	2.3 内部结构和接口说明	9
	2.4 产品尺寸(mm)	10
Ξ、	硬件切换	. 10
四、	产品配置	. 11
	4.1 配置方式	. 11
	4.1.1 NFC 配置	11
	4.1.2 USB 配置	12
	4.2 LoRaWAN [®] 基本配置	. 13
	4.2.1 LoRaWAN [®] 基本参数	13
	4.2.2 LoRaWAN [®] 通信频段	16
	4.2.3 组播参数	17
	4.3 数据接口配置	. 18
	4.3.1 基本设置	18
	4.3.2 模拟量输入(AI)	19
	4.3.3 RS485	21
	4.3.4 RS232	23
	4.3.5 GPIO	24
	4.3.6 SDI-12	26
	4.4 告警规则	. 28
	4.5 存储设置	. 29
	4.5.1 数据存储	29
	4.5.2 数据重传	30
	4.5.3 数据回传	31
	4.6 维护	. 32
	4.6.1 升级	32
	4.6.2 备份	33
	4.6.3 重置	34

五、	产品安装	. 34
	5.1 壁挂式安装	. 34
	5.2 抱杆式安装	. 35
六、	通信协议	. 36
	6.1 上行包(设备信息)	. 36
	6.2 上行包(传感器数据)	. 37
	6.2.1 周期包	. 37
	6.2.2 告警包	.41
	6.3 下行指令	. 42
	6.4 历史数据查询(数据回传)	. 43

一、产品简介

1.1 产品介绍

星纵物联 UC50x 系列是一款专为传统传感器数据转换而设计的多功能数据采集器。UC50x 系列集成 了 GPIO、串口、模拟量输入、SDI-12 等多种类型的通信接口,能够对接多种类型的传统传感器,快速接 入 LoRaWAN[®]网络;除此之外,UC50x 系列支持与星纵物联 LoRaWAN[®]网关及星纵云平台结合,实现远 程数据监控和管理。

UC50x 系列提供太阳能供电或大容量电池供电两种版本,且可选内/外置 LoRa[®]天线,充分考虑供电需求与部署环境。UC50x 系列采用 IP67 防尘防水外壳和 M12 防水航空接头设计,可广泛应用于智慧农业、 智慧工业等多种户外场景。

1.2 产品亮点

- 数据采集接口丰富:集成 GPIO、RS232、RS485、模拟量输入、SDI-12等多种通信接口,支持对接 多种传感器
- 防护等级高: 防护等级高达 IP67, 接口采用 M12 防水航空接头, 适用各种恶劣环境
- 通信距离远:空旷环境下通信距离可达 15 公里,且提供内/外置 LoRa[®]天线两种版本,封闭环境可引出外置天线,增强信号
- 供电方式多样:功耗低,可选大容量电池供电或太阳能供电,同时支持 DC 供电或外接大功率太阳能板,满足不同场景供电需求
- 数据完整性:具备本地存储功能,可存储高达 600 多条传感器数据,且支持断网数据重传与数据回传 功能,确保信息可追溯,避免数据丢失
- 组播功能:支持组播功能,实现远程批量管理设备 (仅 UC501 支持)
- 规则引擎告警:通过添加本地规则引擎,实现数据突变告警和超阈值告警功能
- 电池高/低温保护:设备在高/低温环境下自行限制充电电流,保护电池免受损伤
- 简单易用: 支持手机 NFC 快速配置
- 兼容性好:兼容标准 LoRaWAN[®]网关和第三方网络服务器平台,支持自组网
- 管理一体化:快速对接星纵物联 LoRaWAN[®]网关和星纵云平台,无需额外配置

Milesight 夏俱物联 厦门星纵物联科技有限公司

二、产品结构

2.1 包装清单

使用前请检查产品包装盒内是否包含以下物品。

1 × 太阳能板

(仅 UC501 可选)

如果上述物品存在损坏或遗失的情况,请及时联系您的代理或销售代表。

2.2 外部结构和接口说明

数据接口 1:

引脚	描述	颜色
1	5V/9V/12V (可切换)	橘色
2	3.3V	红色
3	GND	黑色
4	模拟量输入1	黄色
5	模拟量输入 2	绿色
6	5-24V DC	白色

数据接口 2:

引脚	描述		颜色
1	5V/9V/12V (可切换)		橘色
2	3.	红色	
3	G	黑色	
4	GP	蓝色	
5	GPIO2		棕色
6	RS232/RS485 (可切换)		绿色
7			黄色
8	SDI-12		紫色
引脚	RS232	RS485	
6	TXD	Α	
7	RXD	В	

2.3 内部结构和接口说明

- 指示灯

🚩 - LoRaWAN®天线

拨码开关:

拨码类型	拨码设置		
	12V: 1 on 2 off 3 off		
电源输出	9V: 1 off 2 on 3 off		
	5V: 1 off 2 off 3 on		
	不启用: 1 off 2 off 3 off		
模拟量输入	4-20mA ADC: 1 off 2 on 3 on		
	0-10V ADC: 1 on 2 off 3 off		
	A 和 B 之间增加 120 欧电阻:1 on 2 off 3 off		
RS485	A 上拉一个 1k 电阻:1 off 2 on 3 off		
	B 下拉一个 1k 电阻:1 off 2 off 3 on		

注意:

(1) 电源输出默认为 12V,模拟量输入默认为 4-20mA, RS485 电阻默认全禁用。

(2) 接口1的电源输出用于给模拟量输入设备供电,接口2的电源输出用于给串口/SDI-12终端设备供电。

(3) 切换拨码开关时请确保设备处于关机或断电状态。

电源按钮:

功能	操作和指示灯状态
开机	长按电源按钮超过3秒。 LED: 灭 → 亮
关机	长按电源按钮超过3秒。 LED: 亮 → 灭
恢复出厂设置	长按电源按钮超过 10 秒。 LED: 闪烁
确认开关状态	快速按一下电源按钮,如果亮则说明设备开启。

2.4 产品尺寸 (mm)

三、硬件切换

可根据需求切换硬件接口的工作模式。切换步骤如下:

1. 拆下设备背面的 4 个螺帽和螺丝, 取下防水外壳。

2. 参考 2.3 的内部接口说明拨动拨码开关, 切换所需的模拟量输入模式和电压输出模式。

3. 完成配置后盖上外壳, 拧紧螺丝。

注意:硬件切换时请保证设备关机。

四、产品配置

4.1 配置方式

UC50x 系列支持 NFC 配置和 USB Type-C 口配置,可任选一种使用。配置前请确认已完成所有的硬件配置以及与采集终端的接线。

4.1.1 NFC 配置

配置准备:

- 手机 (支持 NFC)
- Milesight ToolBox App:可在星纵物联官网(Android 系统)或苹果商店(IOS 系统)下载

配置步骤:

- 1. 开启手机 NFC 功能后打开 Milesight ToolBox App;
- 2. 将手机的 NFC 区域紧贴在产品正面的 NFC 感应区几秒不动,即可获取产品的基本信息;
- 3. 在 App 上设置后紧贴产品的 NFC 感应区即可完成配置。第一次使用手机为设备配置时需要输入密码 进行验证,默认密码: 123456。

注意:

(1) 不同安卓手机的 NFC 区域不同,大致位于背部摄像头周围,具体请查询手机说明书或咨询相关客服。

(2) NFC 读写失败后,请将手机暂时远离设备再贴到设备上尝试。

(3) UC50x 系列设备也支持使用星纵物联专用 NFC 读卡器连接电脑进行配置,可联系星纵物联工作人员购买。

4.1.2 USB 配置

配置准备:

- Type-C 数据线
- 电脑
- 配置工具 ToolBox: 可在星纵物联官网下载

配置步骤:

1. 打开 UC50x 设备外壳,将产品与电脑通过 USB Type-C 数据线连接后打开 ToolBox;

将类型设置为常规 (General),串口为对应的 USB 接口,输入对应的登录密码 (默认密码: 123456)。
 登录之后即可通过 ToolBox 查看或修改产品配置。

连接类型	常规	•
串口	COM1	-
登录密码	•••••	
波特率	115200	•
数据位	8	-
奇偶位	无	-
停止位	1	-

	状态 >	
	型号:	UC501-915M
状态	序列号:	6454C02840880000
	设备EUI:	24e124454c028408
	固件版本:	01.07
l∰j	硬件版本:	2.1
~ ~ 常规	设备状态:	开机
	入网状态:	入网
	RSSI/SNR:	-33/9
((0))	电量:	100%
LoraWAN设置	信道掩码:	000000000000000 0fff
	上行帧计数:	5
	下行帧计数:	4

4.2 LoRaWAN[®]基本配置

设备连接到 LoRaWAN[®]网络前需要设置相关网络通信参数,请根据如下步骤完成 LoRaWAN[®]网络配置。 4.2.1 LoRaWAN[®]基本参数

打开 ToolBox App 的"设置->LoRaWAN[®]设置"菜单或打开 ToolBox 软件的"LoRaWAN[®]设置->基本 设置",设置设备的入网类型、Class 类型以及配置入网所需的 App EUI、应用程序密钥等参数。以下参数 可以保持默认不变但必须和网络服务器上的配置相同。

状态	设置			
LoRaWAN 设置				\vee
设备EUI				
24E124145C5232	247			
* APP EUI				
24e124c0002a00	001			
* 应用程序端口		-	85	+
入网方式				
ΟΤΑΑ				•
* 应用程序密钥				
*****	******	****		
LoRaWAN 版本				
V1.0.3				*
工作模式				
Class C				•
接收窗口速率 (1)				
DR5 (SF7, 125 kHz)				•
接收窗口频率 🚺				
505300000				

确认包模式 (1)	
重新入网模式	
设置发送链路检测信号数量 ①	
32	
速率自适应模式 (1)	
扩频因子 (1)	
SF10-DR2	•
输出功率	
TXPower0-19.15 dBm	

参数	说明
设备 EUI	LoRaWAN [®] 设备的唯一识别标识符,可在产品标签上查看。
App EUI	设备的 App EUI,默认值为 24E124C0002A0001。
应田玛皮洲口	发送或接收 LoRaWAN [®] 数据的端口,默认端口为 85。
心儿的在广场中间	注意: RS232 数据传输不使用该端口,请在 RS232 配置菜单下配置相关端口。
工作培士	UC501:可选 Class A (默认)或 Class C
	UC502: Class A
入网方式	可选 OTAA 或 ABP。
LoRaWAN [®] 版本	可选 V1.0.2,V1.0.3。
应用积度密约	OTAA 入网使用的应用程序密钥(App Key),默认值为
<u> </u>	5572404C696E6B4C6F52613230313823。
设备地址	ABP 入网使用的设备地址(DevAddr),默认值为产品序列号 5~12 位。
网络今洋家妇	ABP 入网使用的设备网络会话密钥(Nwkskey),默认值为
网络云话名钥	5572404C696E6B4C6F52613230313823。
应田理庆今迁家妇	ABP 入网使用的应用程序会话密钥(Appskey),默认值为
<u> 巡用</u> 住庁云伯省切	5572404C696E6B4C6F52613230313823。
接收窗口速率	接收窗口 2 速率
接收窗口频率	接收窗口 2 频率
忙场中了	禁用 ADR 的情况下设备将根据此速率传输数据。SF(扩频因子)越小,传输速
1	率越快,适合近距离传输,反之亦然。
 确认 句 描 述	启用后,设备向服务器发送的数据后没有收到 ACK 答复的情况下,设备将重发
啪以已保入	1 次数据。

	上报间隔≤30分钟:设备将每30分钟发送一次链路检测信号,达到一定数量没
手站之网棋士	有收到答复后将重新入网;
里机八网快式	上报间隔>30分钟:设备将根据上报间隔随数据包发送一次链路检测信号,达
	到一定数量没有收到答复后将重新入网。
速率自适应模式	启用后网络服务器可以调节节点的数据速率和功耗,建议在设备没有移动的情况
(ADR)	下使用。
输出功率	设备发送数据的输出功率。

注意:

- (1) 如采购大量设备,可联系星纵物联获取设备 EUI 表格。
- (2) 如需随机 App Key 请在购买前联系星纵物联相关工作人员。
- (3) 如使用星纵云管理 UC50x 系列设备,请使用 OTAA 入网。
- (4) 仅 OTAA 入网类型下支持重新入网模式。

4.2.2 LoRaWAN®通信频段

打开 ToolBox App 的"设置->LoRaWAN[®]设置"菜单或打开 ToolBox 软件的"LoRaWAN[®]设置->通道设置",设置设备发送数据使用的 LoRa[®]频段,一般必须和 LoRaWAN[®]网关使用的频段匹配。

	设置	维护
* 支持频率		
CN470		\sim
启用通道 (1)		
8-15		
序号	频率/M	Hz (1)
0 - 15	470.3 -	473.3
16 - 31	473.5 -	476.5
32 - 47	476.7 -	479.7
48 - 63	479.9 -	482.9
64 - 79	483.1 -	486.1
80 - 95	486.3 -	489.3

配置示例:

1,40: 启用通道1和通道40

1-40: 启用通道 1-40

1-40, 60: 启用通道 1-40 和 60

All: 启用所有通道

空: 禁用所有通道

4.2.3 组播参数

仅 UC501 使用 Class C 工作模式时,支持组播功能。UC501 最多可配置 4 个组播群组。启用对应的组播 群组,配置设备组播参数,通过网络服务器或云平台下发的组播指令实现批量控制。

	Llass 夹型	
	Class C	~
	接收窗口速率	
	DR0 (SF12, 125 kHz)	~
1	接收窗口频率	
	505300000	
4	组播群组1	
1	组播地址 ①	
	11111111	
	组播网络会话密钥	

1	组播应用会话密钥	

1	组播群组2	
1	组播群组3	
1	组播群组4	
参数	说	明
接收窗口速率	组播速率同节点接收窗口2速率,	默认 DR0。
接收窗口频率	组播频率同节点接收窗口 2 频率,	默认 505.3MHz。
组播地址	长度为8位,用于区别不同的组播	群组。
组播网络会话密钥	长度为 32 位,与网关组播参数配 组播群组 1:5572404C696E6B4	置一致,默认值为: C6F52613230313823;

	组播群组 2:5572404C696E6B4C6F52613230313824;
	组播群组 3:5572404C696E6B4C6F52613230313825;
	组播群组 4:5572404C696E6B4C6F52613230313826。
	长度为 32 位,与网关组播参数配置一致,默认值为:
	组播群组 1:5572404C696E6B4C6F52613230313823;
组播应用会话密钥	组播群组 2:5572404C696E6B4C6F52613230313824;
	组播群组 3:5572404C696E6B4C6F52613230313825;
	组播群组 4:5572404C696E6B4C6F52613230313826。

4.3 数据接口配置

将需要采集数据的终端设备连接到 UC50x 设备的数据接口后,需要完成如下配置。

4.3.1 基本设置

打开 ToolBox App 的"设置->常用设置"菜单或 ToolBox 软件的"常规->基本信息"菜单设置设备的数据上报周期。

基本设置	模拟量输入
设备ID	6454D1077953
上报间隔	300 s
采集周期	60 s
数据存储	0
数据重传	(?)
修改密码	
设备恢复供电状态	保持断电前状态▼

参数	说明
上报间隔	设备上报数据的时间间隔,默认值为 1200 秒,可配置 1-64800 秒。 <mark>注意</mark> :RS232 数据上报不遵循此设置。
采集间隔	默认禁用,设置阈值告警规则后自动启用,采集间隔≤上报间隔。
设备恢复供电	设备断电后重新上电的设备状态(开机/关机/保持断电前状态)。 ● UC501 默认保持断电前状态 ● UC502 默认关机
数据存储	是否启用本地数据存储功能,参考 4.5.1 章节。

粉皮素体	是否启用数据重传功能,启用后设备在断网后会记录断网时间点,待设备重新
致抗里19	联网后重传断网时间点与联网时间点之间的存储数据包。参考 4.5.2 章节。
修改密码	修改设备登录密码。

4.3.2 模拟量输入 (AI)

使用 UC50x 设备的模拟量输入前,请将终端设备接到 UC50x 数据接口 1 的模拟量输入接口。如需 UC50x 给终端设备供电,请将终端电源线接到接口 1 的供电输出接口。

采集配置:

1. 打开 ToolBox App 的"设置->AI 设置"菜单或 ToolBox 软件的"常规->模拟量输入"菜单启用模拟量输入接口。

根据终端设备类型选择 UC50x 设备的模拟量输入类型。注意:模拟量输入默认为 4-20mA。若需要使用 0-10V 采集,软硬件需要同步切换,硬件切换请参考三、硬件切换。

3. 如使用 ToolBox 软件, 点击"读取"检查 UC50x 能否从终端数据获取到正确的数据。如使用 ToolBox App, 请先点击"采集"后将手机紧贴设备完成数据采集;然后点击"读取"将手机紧贴设备获取数据。

基本设置	模拟量输入	串口
接口1(Pin1)5/9/12V输出		
接口1(Pin2) 输出3.3V	D	
接口名称	模拟量输入1	
启用	•	
输入信号类型	4-20 mA	-
Osh	20.00	
Osl	4.00	
Unit	mA	
状态		读取
接口名称	模拟量输入2	
启用		
输入信号类型	0-10 V	<u> </u>
Osh	10.00	
Osl	0.00	
Unit	V	
状态		读取
保友		

参数	说明
启用	启用/禁用模拟量输入接口。
	模拟量比例换算,设备将对采集值进行换算后显示,周期上报数据依旧为原始
Och (Ocl	数据。Osh 需大于 Osl,输入范围:-65535~65535。
USN/USI	Osh:采集到最大值代表的数值。
	Osl:采集到最小值代表的数值。
کہ (ک	4-20mA 电流输入 :默认 mA,可自定义。
₽1⊻	0-10V 电压输入 :默认 V,可自定义。
读取	点击"读取"获取当前模拟量输入数值。

供电配置:

启用"接口1 (Pin1) 5/9/12V 输出"或"接口1 (Pin2) 3.3V 输出",并配置供电时间。注意:测试时 建议先使用外部电源为终端设备供电。

基本设置	模拟量输入		串口
赛口1(Pin1)5/9/12V输出			
R集数据前对设备供电时间	5	s	
共电电流	0		mA
轰口1(Pin2) 输出3.3V	•		
共电方式	可配置供电时间	0	- I
共电电流	0		mA
R集数据前对设备供电时间	5	s	

参数	说明
接口1 (Pin1)	启用接口 1 的 5V/9V/12V 电源输出,默认为 12V,使用其它电压请参考拨码
5/9/12V 输出	开关说明完成拨码。
采集数据前对设备供电	UC50x 在采集模拟量数据前为终端设备提前供电,保证终端正常开机。可配置
时间	0-600 秒。
接口1 (Pin2)	
3.3V 输出	后用按口 1 的 3.3 V 电源制出
他中午十	支持"持续供电"或"可配置供电时间"。当选择"可配置供电时间"时,可
供电力式	配置 0-600 秒。
供电电流	输入终端设备的额定工作电流, UC50x 将根据该供电电流计算对外供电损耗。

可设置 0~60mA, 当设置为 0 时则不计算对外供电损耗。

4.3.3 RS485

使用 UC50x 设备的 RS485 前,请确认终端设备支持 Modbus RTU 标准协议,然后将设备接到 UC50x 数据接口 2 的串口。如需 UC50x 给终端设备供电,请将终端电源线接到接口 2 的供电输出接口。

注意:测试时建议先使用外部电源为 RS485 终端设备供电。

配置步骤:

1. 打开 ToolBox App 的"设置->串口设置"菜单或 ToolBox 软件的"常规->串口"菜单启用串口并设置为 RS485, 配置串口的基本参数。串口基本参数必须和终端设备的串口参数相同。

基本设置	模拟	量输入		串口		
启用						
接口类型		RS485 (Modbus Ma	ster) 💌			
启用接口2(Pin1) 输出5/9/12V						
采集数据前对设备供电时间		5		s		
供电电流		0.00		mA		
接口2(Pin2) 输出3.3V		0				
供电方式		持续供电				
供电电流		0.00		mA		
波特率		9600	-			
数据位		8 bits	•			
停止位		1 bits	•			
奇偶位		无	-			
指令执行间隔		50		ms		
最大响应时间		500		ms		
最大重试次数		3				
Modbus透传模式	?	2				
透传模式	?	主动透传	-			
端口	0	2				
参数			说明			
(Pin1) 启用接口 2 角	的 5V/9\	//12V 电源输出	,默认	为12V,	使用	其它电应

5V/9V/12V 输出	开关说明完成拨码。
采集数据前对设备供电	UC50x 在采集 RS485 数据前为终端设备提前供电,保证终端正常开机。可配
时间	置 0-600 秒。
接口 2 (Pin2)	
3.3V 输出	后用按山 2 的 3.3V 电源输出为 RS485 终端设备供电。
	支持"持续供电"或"可配置供电时间"。当选择"可配置供电时间"时,可
供电万式	配置 0-600 秒。
伊中中济	输入 RS485 终端设备的额定工作电流,UC50x 将根据该供电电流计算对外供
供电电流	电损耗。可设置 0~60mA, 当设置为 0 时则不计算对外供电损耗。
波特率	可选 1200/2400/4800/9600/19200/38400/57600/115200。
数据位	8 bit
停止位	可选 1 bit/2 bit。
奇偶位	可选无/奇校验/偶校验。
指令执行间隔	每个 Modbus 通道指令的执行间隔。
最大响应时间	发送 Modbus 指令后等待终端从站设备回复的最大时间。
最大重试次数	终端从站设备读取数据失败后的最大重试次数。
Madbus 法 估带	启用后, UC50x 将透传直接来自网络服务器的 Modbus RTU 指令给 RS485
WIOUDUS 迈传快式	终端设备,并将终端设备的 Modbus 回复直接返回给网络服务器。
	端口范围: 1-223。
端口	<mark>注意</mark> :SDI-12 透传端口、RS485 透传端口、RS232 端口、LoRaWAN [®] 应用程
	度端口不可冲突。

2. 点击 🕀 添加 Modbus 通道,添加后 UC50x 将根据通道配置向终端从站设备发送 Modbus 读指令。

通道设置	全部读取				
通道ID 名称 Slave ID _打	寄存器 卖取寄存器				
	1 Holding Register(INT16) ▼ AB ▼ □ ○ 读取				
保存	最多16个通道				
参数					
通道 ID	设置通道号,可选1~16。				
名称	自定义每个通道的名称。				
Slave ID	Modbus 从站设备 ID。				
寄存器起始地址	配置要读取的 Modbus 从站设备寄存器的起始地址。				

读取寄存器数量	从站寄存器读取的数据数量,固定为1。
类型	Modbus 数据类型。
字节顺序	当 Modbus 数据类型为 Input Register 或 Holding Register 时,可配置合适
	的字节读取顺序来正确处理来自从站设备的 Modbus 数据。
	● INT32/Float: ABCD, CDBA, BADC, DCBA, 默认 CDAB
	● INT16: AB, BA, 默认 AB
有符号	采集的数据是否为有符号数据。

配置示例:

UC50x 设备会自动向终端从站设备发送 Modbus 读指令 01 03 00 00 00 01 84 0A

通道ID	名称	Slave ID 寄存器。 起始地址	读取寄存器 数量	类型		字节顺序	有符号	值				
1 -	Temperature		1 Holding	Register(INT16)	•	AB	. 💿		\odot	读取		⊕ ⊗
保存										最多	16个通道	

3. 如使用 ToolBox 软件,点击每个通道最后一列的"读取"检查 UC50x 能否从终端数据获取到正确的数据,也可以点击通道设置最上方的"全部读取"获取已配置的所有通道的数据。

通道设置											全部读取
通道ID	名称	Slave ID 寄存器 刺起始地址	取寄存器 数量	类型		字节顺序	有符号	值			
1 -	Temperature	1 0	1 Holdin	g Register(INT16)	•	AB	. 0		\odot	读取	\otimes
2 -	Humidity	2 0	1 Holdin	g Register(INT16)	•	AB			\odot	读取	(+) (×)
保存										最多	16个通道

注意:

- (1) 请勿频繁点击"读取",不同终端设备的响应时间可能不同。
- (2) 如使用 ToolBox App, 请先进入每个通道点击"采集"后将手机紧贴设备完成数据采集; 然后点击"读 取"将手机紧贴设备获取数据。

4.3.4 RS232

使用 UC50x 设备的 RS232 前,请将终端设备接到 UC50x 数据接口 2 的串口。如需 UC50x 给终端设备供电,请将终端电源线接到接口 2 的供电输出接口。

配置步骤:

1. 打开 ToolBox App 的"设置->串口设置"菜单或 ToolBox 软件的"常规->串口"菜单启用串口并设置为 RS232, 配置串口的基本参数。串口基本参数必须和终端设备的串口参数相同。

2. 完成配置后, 当终端设备向 UC50x 设备发送数据时, 设备会将数据直接发送到网络服务器。

	基本设置	模拟量输入	串口
	启用		
	接口类型	RS232	<u> </u>
	启用接口2(Pin1) 输出5/9/12	2V 🕝	
	供电电流	0.00	mA
	接口2(Pin2) 输出3.3V		
	供电电流	0.00	mA
	波特率	9600	-
	数据位	8 bits	_
	停止位	1 bits	-
	奇偶位	无	_
	端口	86	
参数		说明	
接口 2 (Pin1)	启用接口 2 的 5V/9	9V/12V 电源输出,默认	为 12V,使用其它电应
5V/9V/12V 输出	说明完成拨码。 <mark>注</mark>)	意: 使用 RS232 并启用电]源输出时, 电源输出
接口 2 (Pin2)	白田培口 2 的 3 3\	/ 由酒硷中为 PC232 绞硙	
3.3V 输出		中心原制山为113232 终端	
伊由由法	输入 RS485 终端设	设备的额定工作电流,UC	50x 将根据该供电电泳
	耗。可设置 0~60n	nA,当设置为 0 时则不计	十算对外供电损耗。
波特率	可选 1200/2400/4	800/9600/19200/3840	0/57600/115200。
数据位	8 bit。		
停止位	可选 1 bit/2 bit。		
奇偶位	可选无/奇校验/偶枝	交验。	
	用于 RS232 数据传	输的端口,与其它数据7	下同。
端口	<mark>注意:</mark> SDI-12 透传	端口、RS485 透传端口、	RS232 端口、LoRaV
	口不可冲突。		

4.3.5 GPIO

使用 UC50x 设备的 GPIO 前,请将终端设备接到 UC50x 数据接口 2 的 GPIO 接口。

配置步骤:

1. 打开 ToolBox App 的"设置->GPIO 设置"菜单或 ToolBox 软件的"常规->GPIO"菜单启用 GPIO 接

口。

- 2. 选择接口类型。
- **数字量输入**:检测设备的高低电平。
- **数字量输出**:发送电压信号触发设备。
- 计数器:脉冲计数。

数字量输入:

- 1. 设置数字输入的初始状态。设置为拉高时,下降沿触发;设置为拉低时,上升沿触发。
- 2. 点击"读取"获取当前数字输入状态。

接口名称	GPIO 1
启用	
接口类型	数字重输入1
数字里输入 (? [拉低]
状态	低电平 读取

数字量输出:

- 1. 点击"切换状态"改变数字输出的状态,确认是否能够触发终端设备。
- 2. 点击"读取"获取当前数字输出状态。

接口名称	GPIO 1	
启用	•	
接口类型	数字重输出1	
状态	高电平	🚫 读取 切换状态

计数:

	启用							
	接口类型		计数 _					
	数字里输入	?	拉低					
	数字滤波	?	0					
	重启设备时计数不清零							
	计数值		30	同	新	开始	清零	
	修改计数值							
参数				说明	明			

数字量输入	设置数字量输入的初始状态。设置为拉高/无需时,下降沿触发加1;设置为拉低时,上升沿触发加1。
数字滤波	启用后,仅对速率 250us 以上的脉冲进行计数,自动过滤 250us 以下的脉冲
	杂波。
重启设备时计数不清零	设备关机时保存计数值不清零。
"开始"或"停止"	控制 UC50x 开始/停止计数。
"刷新"	获取当前计数值。
"清零"	重新开始计数。
修改计数值	预设计数初始值,默认初始值为0。

4.3.6 SDI-12

使用 UC50x 设备的 SDI-12 接口前,请确认终端设备支持 SDI-12 标准协议,然后将终端设备接到 UC50x 数据接口 2 的 SDI-12 接口。如需 UC50x 给终端设备供电,请将终端电源线接到接口 2 的供电输出接口。 注意:测试时建议先使用外部电源为 SDI-12 终端设备供电。

配置步骤:

1. 打开 ToolBox App 的 "设置->SDI-12 设置" 菜单或 ToolBox 软件的 "常规->SDI-12" 菜单启用 SDI-12 接口, 配置 SDI-12 的基本参数。接口基本参数必须和终端设备参数相同。

启用		
启用接口2(Pin1) 输出5/9/12V		
采集数据前对设备供电时间	5	s
供电电流	0.00	mA
波特率	1200	•
数据位	7 bits	•
停止位	1 bits	•
奇偶位	偶校验	•
最大重试次数	3	
SDI-12透传模式	? 🖬	
端口	80	

参数	说明			
接口 2 (Pin1)	启用接口 2 的 5V/9V/12V 电源输出,默认为 12V,使用其它电压请参考拨码			
5V/9V/12V 输出	开关说明完成拨码。			

采集数据前对设备供电	UC50x 在采集 SDI-12 数据前为终端设备提前供电,保证终端正常开机。可配		
时间	置 0-600 秒。		
供中中达	输入 SDI-12 终端设备的额定工作电流, UC50x 将根据该供电电流计算对外供		
供电电流	电损耗。可设置 0~60mA, 当设置为 0 时则不计算对外供电损耗。		
波特率	可选 1200/2400/4800/9600/19200/38400/57600/115200。		
数据位	可选 7 bit/8 bit		
停止位	可选 1 bit/2 bit		
奇偶位	可选无/奇校验/偶校验。		
最大重试次数	当 UC50x 读取 SDI-12 终端设备数据失败后的最大重试次数。		
CDI 12 法住世 十	启用后,UC50x 将透传直接来自网络服务器的指令给 SDI-12 终端设备,并将		
SDI-12 迈传侠式	终端设备的回复直接透传给网络服务器。		
	端口范围: 1-223。		
端口	注意: SDI-12 透传端口、RS485 透传端口、RS232 端口、LoRaWAN [®] 应用程		
	度端口不可冲突。		

2. 点击 🕙 添加 SDI-12 通道, 添加后 UC50x 将根据通道配置向 SDI-12 传感器发送指令。

通道设置			全部采集	
通道ID 名称 寄存器 起始地封	SDI-12指令	值		
1 1 9	读取 写入 9M!;9D0!;	9+1.6+0+25.2		
2 2 9	读取 写入 9M!;9D0!;	(+) 9+1.6+0+25.2 采集		
参数		说明		
通道 ID	设置通道号,可选1~16。			
名称	名称			
	配置要读取的 SDI-12 传感器地址。			
传感器地址	● 点击"读取"即可读取 SDI-12 传感器地址。			
	● 修改地址后,并点击"写入"	"即可修改传感器地址。		
	填写 SDI-12 指令, 默认输入如下	2个指令,可根据传感器需求添加,	/修改指令。	
	最多可添加 16 条指令。			
SDI-12 指令	● aM!:测量传感器数值			
	● aD0!: 返回传感器测量的数值			
	其中 a 为传感器地址。			
值 采集值可以是一个值也可以是多个值,多个值用"+"或"-"来区分。			分。	

	点击每个通道最后一列的"采集"检查 UC50x 能否从终端数据获取到正确的
采集/全部采集	数据,也可以点击通道设置最上方的"全部采集"获取已配置的所有通道的数
	据。

注意:

- (1) 请勿频繁点击"采集",不同终端设备的响应时间可能不同。
- (2) 如使用 ToolBox App, 请先进入每个通道点击"采集"后将手机紧贴设备完成数据采集; 然后点击"读 取"将手机紧贴设备获取数据。

4.4 告警规则

UC50x 支持设置告警规则,当 RS485 通道值或 AI 模拟量触发设定条件时,及时发送告警包。每个告警规则采用 IF-THEN 条件语句的形式,单个设备最多可配置 16 个指令。

配置步骤:

1. 打开 ToolBox App 的"设置->规则引擎"菜单或 ToolBox 软件的"规则"菜单,点击编辑按钮设置 指令。

	<mark>设置 ></mark>				关机
					保存
 状态	序号	规则配置	编辑	删除	1
	1	如果rs485通道(temperature(1)) 是 值变化 5.00. 则上报数据包	é	Ī	
(言)、	2		É	Ī	
	3		é	<u> </u>	
((○)) LoraWAN设置	4		É	Ē	1
¥	5		É	Ē	
规则					

设置触发条件:

配置序号.2	配置序号.2
如果 模拟里输入1 模拟里输入2 RS485通道	如果 RS485通道 _ temperature(1 值大于 50.00 值小于 值介于 值交化
则	 N

条件		说明
	值大于	采集数值大于所设阈值,则触发动作。
阈值告警	值小于	采集数值小于所设阈值,则触发动作。
	值介于	采集数值介于所设阈值区间内,则触发动作。
突变告警	值变化	采集数值与上一次相比,突变量超过所设阈值,则触发动作。

设置行为动作:

行为动作默认上报数据包,即发送告警包,参考 6.2.2 章节。

则	上报数据包	-
	上据新报句	

注意:

- (1) 完成告警规则设置后,可在 ToolBox App 的"设置->常用设置"菜单或 ToolBox 软件的"常规->基本信息"菜单根据需求设置数据采集间隔。UC50x 将根据采集间隔定期采集数据,并进行告警判断。
- (2) 模拟量输入会在进行 Osh/Osl 比例换算后再进行告警判断。
- (3) 告警触发后仅上报一次告警包, 需等待通道值回落并重新触发才会再次触发上报。

4.5 存储设置

4.5.1 数据存储

UC50x 系列可存储 600 多条传感器数据,且支持通过 ToolBox App 或 ToolBox 软件导出存储数据

1. 检查设备时间:

通过 Toolbox App 或 Toolbox 软件为设备同步准确的时间;当设备 LoRaWAN[®]版本设置为 1.0.3 或以上版本,网络服务器会在设备入网时通过 MAC 指令同步时间给设备端。

设备状态	开机 🔍
入网状态	已激活
RSSI/SNR	-19/10
设备时间	2022-10-20 17:11 同步

2. 启用数据存储功能:

打开 ToolBox App 的"设置->常用设置"菜单或 ToolBox 软件的"设备设置->基本设置",启用数据存储功能。启用后,设备将存储所有采集数据。

数据存储 ①	
数据重传 ①	

3. 本地数据导出与清除:

- ToolBox App: 打开"维护"菜单,点击"导出",选择导出数据时间段后将手机贴到设备的 NFC 区域完成数据导出;点击"数据清除"按钮,清除历史存储数据。
- ToolBox 软件:打开"维护->备份和重置"菜单,点击"导出",选择开始时间和结束时间,完成数据导出;点击"清除"按钮,清除历史存储数据。

	旋寶出口设置					
取	肖	导出	数据日	时间段		确认
	2022-10-26	5 20:31	至	202	2-11-02 2	20:31
						Э
	2020	.0		2.4	10	20
	2021	9		25	19	30
	2022	10		26	20	31
		11		27	21	32

4.5.2 数据重传

UC50x 支持断网数据重传功能,当设备与网关失联,会主动记录断网时间点,待设备联网后重新传输断网

时间点与联网时间点之间丢失的数据包,避免设备由于断网或丢包导致传感器数据丢失,保证数据完整性。 配置步骤:

1. 打开 ToolBox App 的"设置->常用设置"菜单或 ToolBox 软件的"设备设置->基本设置",启用数据 存储功能与数据重传功能。

数据存储	(i)	•
数据重传	(i)	•

2. 打开 ToolBox App 的"设置->LoRaWAN[®]设置"菜单或打开 ToolBox 软件的"LoRaWAN[®]设置->基本设置", 启用重新入网模式,并设置发送链路检测信号数量。设备将通过链路检测信号包(LinkCheckReq)来判断断网时间点。

确认包模式 (1)	
重新入网模式	
设置发送链路检测信号数量 🧻	
4	
速率自适应模式 (1)	
扩频因子 (1)	
SF8-DR2	•

配置示例解析:

设备至少每 30 分钟发送 1 次链路检测信号包给网关,如果连续 4 次发送链路检测信号包都没有收到网关的回复,则判断设备断网,数据重传的断网时间点将往前推 2 小时(30min * 4=2 小时)。比如 15:30 分发送完第 4 个链路检测包,依旧未收到回复,则断网时间点为 13:30 分,设备在联网后,将把 13:30 到联网时间点的数据从**旧→新**依次重传给网关及网络服务器。

(上报间隔≤30 分钟:设备将每 30 分钟发送一次链路检测信号;上报间隔>30 分钟:设备将根据上报 间隔随数据包发送一次链路检测信号)

4.5.3 数据回传

UC50x 系列支持数据回传功能,可下发指令查询指定时间点或指定时间段的历史存储数据,避免设备由于 断网或丢包导致传感器数据丢失,保证数据完整性。

配置步骤:

1. 启用数据存储功能,参考 4.5.1 章节;

2. 从平台或网络服务器下发指令查询指定时间点/段的历史存储数据,参考 6.4 章节。

注意:

(1) 重传过程中如果再次触发断网条件,恢复联网后只会重传最近一次断网时间点后的数据;

- (2) 重传过程中如果发生断电或重启,恢复供电且联网后将续传上次未传完的数据;
- (3) 回传过程中如果发生断电或重启,恢复供电且联网后将从第一条数据开始重新发送所有回传数据;
- (4) 重传/回传数据格式均以"20"开头,参考 6.4 章节;
- (5) 重传/回传数据与周期包一起累计帧计数。

4.6 维护

4.6.1 升级

ToolBox App

步骤1:将固件下载到手机端;

小面件,开始开级。
维护
6454D1077953
UC502-470M
V1.4
V3.0
6

ToolBox 软件

步骤 1: 将固件下载到本地 PC;

步骤 2: 打开 ToolBox 软件"维护->升级"菜单, 点击"浏览"导入固件, 开始升级。也可以通过点击"检 查最新版本"在线升级。

升级	备份和重置			
号:	UC502-470M			
固件版本:	01.04			
硬件版本:	3.0			
区域:	北京服务器	•		
远程升级:	检查最新版	本		
本地升级			浏览	升级

注意:

- (1) 产品固件可在星纵物联官网下载或联系星纵物联相关工作人员获取。
- (2) 升级过程中请勿对 ToolBox 和设备进行其它任何操作。
- (3) UC50x 系列采用 ToolBox App 升级时, 仅支持安卓版手机。

4.6.2 备份

UC50x 系列支持备份设备配置并导入到其它设备中,可用于快速批量配置。备份导入仅适用于型号和频段 完全相同的设备。

ToolBox App

步骤 1:打开 ToolBox App 的"模板"菜单,将当前配置保存为新的模板到手机上;

步骤 2:选择已保存的模板,点击"写入"后将手机贴到设备的 NFC 区域写入配置。

注意: 在 "模板" 页面选择对应的模板条目, 向左划动选择编辑模板名称或删除模板。点击对应的模板条目即可查看和编辑具体的模板内容。

ToolBox 软件

步骤 1:打开 ToolBox 软件的"维护->备份和重置"菜单,点击"导出"配置备份; 步骤 2:点击"浏览"导入备份文件,点击"导入"将备份文件载入对应的设备。

升级	备份和重置	
配置备份	「导出」	
配置文件		刻览 导入
恢复出厂设置	重置	

4.6.3 重置

可选择如下方法重置设备:

硬件重置:拆下外壳,长按主板上的电源按钮超过 10 秒直到 LED 灯闪烁。 ToolBox App:打开"维护"菜单,点击"重置"后将手机贴到设备的 NFC 区域写入配置。 ToolBox 软件:打开"维护->备份和重置"页面,点击"重置"完成设备重置。

五、产品安装

户外安装注意事项:

- (1) 注意 UC50x 与终端及电源接线的防水处理;
- (2) 安装在高处的设备,需要做好相应的防雷接地。

5.1 壁挂式安装

安装配件:壁挂安装板,安装螺钉,膨胀螺栓,壁挂螺钉和其它辅助工具。

1. 将 4 个膨胀螺栓打到墙上, 然后将壁挂螺丝穿过安装板钉入膨胀螺栓内。

2. 将设备通过背后的螺丝挂到安装支架上,再用1颗固定螺丝将设备底部和安装支架固定在一起。

5.2 抱杆式安装

安装配件:平面安装板,安装螺钉,抱箍和其他辅助工具。

1. 逆时针拧开抱箍的锁固,将抱箍拉直并穿进安装板上的环上,然后将抱箍绕到目标杆上。用螺丝刀顺时 针拧紧抱箍上的锁固。

2. 将设备通过背后的螺丝挂到安装支架上,再用1颗固定螺丝将设备底部和安装支架固定在一起。

六、通信协议

UC50x 系列上/下行数据均基于十六进制格式。数据处理方式低位在前,高位在后。

上/下行指令基本格式:

通道号 1	类型 1	数据 1	通道号 2	类型 2	数据 2	
1 字节	1 字节	N 字节	1 字节	1 字节	M 字节	

6.1 上行包 (设备信息)

设备信息在入网或重启时上报一次。

通道号	类型	数据示例	指令解析
	01 (版本协议)	01	协议版本 V1
	02(IPSO 版本)	01	IPSO 版本 V1
	09 (硬件版本)	01 40	硬件版本 V1.4
	0a(固件版本)	01 14	固件版本 V1.14
	0b (开机)	ff	设备开机
	0f(工作方式)	00	00: Class A; 01: Class B; 02: Class C
	16 (设备 SN)	6710b32590231911	16 位
			1 个字节
			Bit 7-4:表示模拟量输入接口
			≻ 1 - Al 1
	14 (模拟输入类型)	10	> 2 - AI 2
			Bit 3-0:表示模拟量输入类型
			▶ 0 - 4-20 mA
			≻ 1 - 0-10 V

示例:

ff0bffff0201ff166710b32590231911ff090300ff0a0104ff0f00						
通道号	类型	数据	通道号	类型	数据	
ff	0b	ff (设备开机)	ff	02	01 (IPSO 版本 V1.0)	
通道号	类型	数据	通道号	类型	数据	
ff	16	6710b32590231911 (设备 SN)	ff	09	03 00(硬件版本 V3.0)	
通道号	类型	数据	通道号	类型	数据	
ff	0a	01 04 (固件版本 V1.4)	ff	Of	00(工作方式 Class A)	

ff1411 ff1420						
通道号	类型	数据	通道号	类型	数据	
		11			20	
ff	14	模拟量输入接口 AI 1	ff	14	模拟量输入接口 AI 2	
		模拟量输入类型 0-10V			模拟量输入类型 4-20mA	

6.2 上行包 (传感器数据)

6.2.1 周期包

UC50x 根据上报周期定期上报传感器数据,默认周期为 20 分钟。 注意: UC501 电池数据上报周期为 6 小时, UC502 为 12 小时。

通道号	类型	数据
01	75 (电池)	1 个字节,单位:%
	00 (数字输入)	1 个字节,00=低,01=高
03(GPIO 1)	01 (数字输出)	1 个字节,00=低,01=高
	c8 (计数器)	4个字节,无符号数据
	00 (数字输入)	1 个字节,00=低,01=高
04(GPIO 2)	01 (数字输出)	1 个字节,00=低,01=高
	c8 (计数器)	4个字节,无符号数据

05(01.1)		8 个字节					
03(AFT)		字节 1-2: 当前值,float 16					
	e2 (模拟量输入)	字节 3-4: 最小值,float 16					
06(AI 2)		字节 5-6: 最大值,float 16					
		字节7-8: 平均值, float 16					
		37 个字节					
		格式:通道 (1 字节) + 数据 (36 字节)					
08	db (SDI-12)	字节1 :00~0f代表第1~16通道					
		字节 2-37 :采集数据,ASCII 码字符转 HEX					
		注意: 数据位固定 36 字节, 未满 36 字节时, 将在尾部					
		补 0					
		3~6 个字节					
		格式:通道 (1 字节) + 控制位 (1 字节) + 数据 (M					
		字节)					
		字节 1: 通道 ID+6					
		 <mark>注意:</mark> 通道 ID 可在 ToolBox 上配置。如果通道 ID 为 1,					
		数据中的内容为 07。					
		字节 2:					
		Bit 7~3: 数据长度					
		Bit 2~0: 数据类型					
		▶ 000: 线圈					
ff	0e (RS485)	▶ 001: 离散					
		▶ 010: 输入寄存器 (INT16)					
		输入寄存器(INT32 with upper 16 bits)					
		输入寄存器(INT32 with lower 16 bits)					
		▶ 011:保持寄存器 (INT16)					
		保持寄存器(INT32 with upper 16 bits)					
		保持寄存器(INT32 with lower 16 bits)					
		 ▶ 100: 保持寄存器 (INT32) 					
		 ▶ 101: 保持寄存器 (Float) 					
		 ▶ 110: 输入寄存器 (INT32) 					
		▶ 111: 输入寄存器 (Float)					

ff 15 (Modbus 采集异 常)	₹ 1 个字节,采集失败的通道 ID+6	
-------------------------	-------------------------	--

示例:

1. 电池

01 75 5a				
通道号	类型	数据		
01	75 (电池)	5a => 90%		

2. 数字输入

03 00 00			
通道号	类型	数据	
03(GPIO1)	00 (数字输入)	00=>低	

3. 数字输出

04 01 01			
通道号	类型	数据	
04(GPIO2)	01 (数字输出)	01=>高(闭合)	

4. 脉冲计数

04 c8 78 05 00 00		
通道号 数据		
04(GPIO2)	c8 (计数器)	78 05 00 00=>00 00 05 78=1400

5. 模拟量输入

05 e2 9a4a9a4a9a4a					
通道号	类型	当前值	最小值	最大值	平均值

05 (坩州县		9a 4a => 4a			
05 (e2 (模拟	9a= 13.203	9a= 13.203	9a= 13.203	9a= 13.203
	量输入)	(当前值为	(最小值为	(最大值为	(平均值为
		13.203mA)	13.203mA)	13.203mA)	13.203mA)

6. SDI-12

00 db 80				
392b312e362b302b32352e360d0a0000000000000000000000000000000000				
00				
通道号	类型	数据		
08	db (SDI-12)	● 00 (通道1)		
		• 392b312e362b302b32352e360d0a0000000		
		000000000000000000000000000000000000000		
		(数据内容: 9+1.6+0+25.6)		

7. RS485

	ff 0e 08 25 15001500				
通道号	类型	通道 ID	数据类型	数据	
"	0e	08 表示 RS485	25 => 00100101 Bit 7-3: 00100=>4 数据长度为 4	15 00 15 00 (DCBA)=>	
11	(RS485)	(Modbus Master) 通道 2	字节 Bit 2-0: 101 表示保持寄存(Float)	00 15 00 15 =1376277	

注意:当 Modbus 数据类型为输入寄存器或保持寄存器时,可在 ToolBox 工具配置合适的字节读取顺序来 正确处理来自从站设备的 Modbus 数据。配置不同的字节顺序,Toolbox 工具将会读取出不同的数据。上 报网络服务器的数据依旧保持低位在前,高位在后。

示例: 寄存器1值为:0015				
	寄存器 2 值为: 00 20			
数据类型	字节顺序	ToolBox 读取	上报数据 (HEX)	
保持/输入寄存器	AB	21 (0x00 15)	15 00 (BA)	
(INT16)	BA	5376 (0x15 00)	00 15 (AB)	
保持/输入寄存器	ABCD	1376288 (0x00 15 00 20)	20 00 15 00 (DCBA)	
(INT32)	CDAB	2097173 (0x00 20 00 15)	15 00 20 00 (BADC)	

	BADC	352329728 (0x15 00 20 00)	00 20 00 15 (CDAB)
	DCBA	536876288 (0x20 00 15 00)	00 15 00 20 (ABCD)
保持/输入寄存器 (INT32 with upper 16 bits)	/	21 (0x15)	15 00 00 00
保持/输入寄存器 (INT32 with lower 16 bits)	/	32 (0x20)	20 00 00 00

6.2.2 告警包

- **阈值告警**:采集数据满足所设置阈值条件(大于/小于/介于),上报一次阈值告警。
- **突变告警**:前后两次数据差值绝对值超过所设值,上报一次突变告警。

通道号	类型	数据
		4~7 个字节
		格式:通道(1字节)+ 控制位(1字节)+ 数据(M
		字节) + 告警类型 (1字节)
80	0e (RS485 告警)	
		● 通道 (1 字节) + 控制位 (1 字节) + 数据 (M 字
		节):同 RS485 周期上报数据格式
		● 告警类型: 01-阈值告警, 02-突变告警
		9个字节
85(Al 1)		字节 1-2: 当前值, float 16
		字节 3-4: 最小值, float 16
86(AI 2)	e2(榠拟重告警)	字节 5-6: 最大值,float 16
		字节 7-8: 平均值,float 16
		字节 9: 告警类型:01-阈值告警,02-突变告警

示例:

1. RS485 通道值突变告警

80 0e 0713640002		
通道号	类型	数据
		0713640002
80	0e	● 07 (通道1)
		• 13=>00010011

		➢ Bit 7-3: 00010=>2 数据长度为 2 字节
		> Bit 2-0: 011 保持寄存器 (INT16)
	•	64 00(AB)=>00 64=100(通道数据 100)
	•	02 (突变告警)

2. AI 模拟量超阈值告警

85 e2 9a4a9a4a9a4a9a4a 01			
通道号	类型	数据	
		9a4a9a4a9a4a9a4a01	
	- 2	● 9a 4a => 4a 9a= 13.203 (当前值为 13.203mA)	
85		● 9a 4a => 4a 9a= 13.203 (最小值为 13.203mA)	
	ez	● 9a 4a => 4a 9a= 13.203 (最大值为 13.203mA)	
		● 9a 4a => 4a 9a= 13.203 (平均值为 13.203mA)	
		● 01 (阈值告警)	

6.3 下行指令

UC50x 系列支持通过下行指令配置或控制设备。下行指令为确认包模式时,设备执行指令后将立即发送回 复包。

通道号	类型	数据
	02 (设置采集周期)	2 个字节,单位:秒
	03 (设置上报周期)	2 个字节, 单位: 秒
	10 (重启设备)	ff (默认)
	17 (设置设备时区)	2 个字节,数值=时区×10
	28 (触发周期上报)	ff (默认)
ft	68 (数据存储)	00: 禁用
11		01: 启用
		00: 禁用数据重传
	69(设直叙据里传)	01: 启用数据重传
	6a(设置数据重传	3 个字节
		字节 1 :00
		字节 2-3 :重传间隔,单位:秒;可设置 30~1200s (默认

		600s)
0.2	00(控制DO1低电平)	00.4
03	01(控制DO1高电平)	
	00(控制DO2低电平)	0.0 ((
04	01(控制DO2高电平)	

示例:

1. 控制 DO 2 为高

下行指令	通道号	类型	数据
040100ff	04	01 (高/闭合)	00 ff (保留)
设备回复	通道号	类型	
040101	04	01 (数字输出)	01 (高/闭合)

2. 设置上报周期为 20 分钟

下行指令	通道号	类型	数据
ff03b004	ff	03	b0 04=>04 b0=1200 秒=20 分钟
设备回复	通道号	类型	
fe03b004	fe	03	b0 04=>04 b0=1200 秒=20 分钟

3. 设置设备时区为西八区

下行指令	通道号	类型	数据
ff17b0ff	ff	17	b0 ff=>ff b0=-80=-8×10 (时区为西八区)
设备回复	通道号	类型	
fe17b0ff	fe	17	b0 ff (同下行指令)

6.4 历史数据查询 (数据回传)

UC50x 支持数据回传功能,可下发指令查询指定时间点或指定时间段的历史存储数据。

注意:

- (1) 使用该功能前,请确保数据存储功能正常开启,并且设备时间准确;
- (2) 单次下行指令查询指定时间段数据时,最大可上报 300 条存储数据,数据由旧→新根据回传周期,依次上报,只上报前 300 条,超出部分不上报;
- (3) 下行指令查询指定时间点数据时, 若查询不到这个时间点数据, 则查询该时间点前后 2 个上报周期内

是否有数据,若有选择离该时间点最近的一条存储数据上报。若无,则上报 fc6b01。

数据查询指令

通道号	类型	数据
	6b(查询指定时间点 数据)	4 个字节,UNIX 时间戳
fd	62 (杏海地宁时间码	8 个字节
lu	oc (鱼间指定的间段 数据)	字节 1-4 :开始时间,UNIX 时间戳
		字节 5-8 :结束时间,UNIX 时间戳
	6d(停止数据回传)	ff
		3个字节
ff	6a(设置数据回传间 隔)	字节 1 :01
		字节 2-3 : 回传间隔, 单位: 秒; 可设置 30~1200s (默认 60s)

数据回复指令

通道号	类型	数据
	6b	00: 查询成功
fc	6c	01: 查询时间无效
		02: 找不到查询数据
		22 个字节
		时间戳(4 个字节)+ GPIO 1 类型(1 个字节)+ GPIO 1 数
		据(4 个字节)+ GPIO 2 类型(1 个字节)+ GPIO 2 数据(4
		个字节)+ Al 1 数据(4 个字节)+ Al 2 数据(4 个字节)
20 (回 传/重 传数 据)	dc (GPIO 和 AI 接口)	 时间戳: UNIX 时间戳 GPIO 类型: > 00-DI > 01-DO > 02-计数器 GPIO 数据: 4 个字节 AI 数据: 4 个字节, 乘数 0.001
	dd(RS485 通道数据)	4+N 个字节 时间戳 (4 个字节) + RS485 采集通道掩码位 (2 个字节) + 不 同采集通道数据 (M*5 个字节)

		● 时间戳: UNIX 时间戳
		● RS485 采集通道掩码位: 0000 0000 0000 0000 (bit)
		(从右到左代表通道 1-16)
		● 不同采集通道数据:
		▶ 单个采集通道数据由1字节控制位+4字节数据组成
		(同 RS485 周期上报数据格式)
		> 多个通道数据将由通道 1~通道 16 依次拼接
		4+N 个字节
		时间戳 (4 个字节) + SDI-12 采集通道掩码位 (2 个字节) + 不
		同采集通道数据(M*36个字节)
		● 时间戳: UNIX 时间戳
		● SDI-12 采集通道掩码位: 0000 0000 0000 (bit)
	eu(SDI-12)通道叙据)	(从右到左代表通道 1-16)
		● 不同采集通道数据:
		> 单个采集通道数据 36 个字节(同 SDI-12 周期上报数
		据格式)
		> 多个通道数据将由通道 1~通道 16 依次拼接

示例:

1. 查询 UC50x 在 2023-06-30 13:10:00 到 2023-06-30 13:20:00 之间的存储数据

fd6ca8639e6400669e64				
通道号	类型	数据		
fd 6c	开始时间:a8639e64 => 649e63a8 = 1688101800 =2023-06-30			
	Ca	13:10:00		
	60	结束时间:00669e64 => 649e6600 = 1688102400 =2023-06-30		
		13:20:00		

设备端回复

fc6c00		
通道号	类型	数据
fc	6c	00 (查询成功)

通道号	类型	数据
20	dc	时间戳:
		1a649e64 =>2023-06-30 13:11:54
		● 00 (GPIO 1 为 DI)
		● 00 00 00 00=0 (DI 接口低电平)
		● 01 (GPIO 2 为 DO)
		● 01 00 00 00=>00 00 00 01=1 (DO 接口为高电平/闭合)
		● 00 00 00 00=0 (AI 1 为 0)
		● 00 00 00 00=0 (AI 2 为 0)
20	dd	时间戳:
		1a649e64 =>2023-06-30 13:11:54
		数据内容:
		● 03 00=>00 03=>0000 0000 0000 0011 (通道 1 和通道 2)
		● 13 64 00 00 00 (通道1数据)
		▶ 13:数据类型为保持寄存器 (INT16),数据长度 2 个字节
		▶ 64 00 00 00=>00 00 00 64=100 (通道值 100)
		● 13 00 00 00 (通道 2 数据)
		▶ 13:数据类型为保持寄存器 (INT16),数据长度 2 个字节
		▶ 00 00 00 00=>0 (通道值 0)
20	e0	时间戳:
		1a649e64 =>2023-06-30 13:11:54
		数据内容:
		● 03 00=>00 03=>0000 0000 0000 0011 (通道 1 和通道 2)
		 392b312e362b302b32352e310d0a0000000000000000000000000000000000
		00000000000000000000000(通道 1 数据 , HEX 转 ASCII 为
		9+1.6+0+25.1)

	• 392b312e362b302b32352e310d0a0000000000000000000000000000000000
	000000000000000000(通道 2 数据,HEX 转 ASCII 为
	9+1.6+0+25.1)